Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 13: 782198, 2022.
Article in English | MEDLINE | ID: covidwho-1902963

ABSTRACT

Misunderstanding temporal coincidence of adverse events during mass vaccination and invalid assessment of possible safety concerns have negative effects on immunization programs, leading to low immunization coverage. We conducted this systematic review and meta-analysis to identify the incidence rates of GBS that are temporally associated with viral vaccine administration but might not be attributable to the vaccines. By literature search in Embase and PubMed, we included 48 publications and 2,110,441,600 participants. The pooled incidence rate of GBS was 3.09 per million persons (95% confidence interval [CI]: 2.67 to 3.51) within six weeks of vaccination, equally 2.47 per 100,000 person-year (95%CI: 2.14 to 2.81). Subgroup analyses illustrated that the pooled rates were 2.77 per million persons (95%CI: 2.47 to 3.07) for individuals who received the influenza vaccine and 2.44 per million persons (95%CI: 0.97 to 3.91) for human papillomavirus (HPV) vaccines, respectively. Our findings evidence the GBS-associated safety of virus vaccines. We present a reference for the evaluation of post-vaccination GBS rates in mass immunization campaigns, including the SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/adverse effects , Guillain-Barre Syndrome/epidemiology , Influenza Vaccines/adverse effects , Mass Vaccination/adverse effects , Papillomavirus Vaccines/adverse effects , Alphapapillomavirus/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , Population Surveillance , SARS-CoV-2/immunology
2.
Viruses ; 13(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1282638

ABSTRACT

Human papilloma virus (HPV) is the most common sexually transmitted infection worldwide causing a variety of benign and malignant conditions. A significant portion of the global population is infected with HPV, with the virus attributed to causing up to 5% of cancers worldwide. Bivalent, quadrivalent, and nine-valent vaccinations exist to aid in the prevention of these diseases and have been proven to be effective at preventing both benign and malignant disease. While vaccination is readily accessible in more developed countries, barriers exist to worldwide distribution and acceptance of vaccination. Vaccination and screening of HPV infection when used in combination are proven and predicted to decrease HPV related pathology. Improvements in vaccination formulations, for treatment as well as prevention, are actively being sought from a variety of mechanisms. Despite these advancements, and the data supporting their efficacy, there has been substantial delay in obtaining adequate vaccination coverage. In reviewing these challenges and looking forward to new vaccine development-especially within the current pandemic-it is clear from the challenges of HPV we require methods to more effectively encourage vaccination, ways to dispel vaccination myths as they occur, and implement better processes for vaccine distribution globally.


Subject(s)
Alphapapillomavirus/immunology , Papillomaviridae/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Vaccination , Female , Humans , Mass Screening , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccine Development
3.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: covidwho-1126517

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology , COVID-19 Drug Treatment
4.
JNCI Cancer Spectr ; 5(2): pkab011, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1123321

ABSTRACT

The current global novel coronavirus disease 2019 (COVID-19) pandemic threatens to derail the uptake of human papillomavirus (HPV) vaccination in low- and lower-middle income countries with major disruptions to routine immunization and the introduction of new vaccines delayed. This has a major impact on the World Health Organization cervical cancer elimination strategy, where it is dependent on HPV vaccination as well as cervical cancer screening and treatment. We discuss current opportunities and barriers to achieve high uptake of HPV vaccination in low- and lower-middle income countries as well as the impact of COVID-19. Implementation of 4 key recommendations for HPV vaccination in low- and lower-middle income countries is needed: increased global financial investment; improved vaccine supply and accelerated use of a single-dose schedule; education and social marketing; and adoption of universal school-based delivery. With the commitment of the global health community, the adoption of these strategies would underpin the effective elimination of cervical cancer.


Subject(s)
Alphapapillomavirus/immunology , COVID-19/complications , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/immunology , Vaccination/statistics & numerical data , Alphapapillomavirus/physiology , COVID-19/epidemiology , COVID-19/virology , Developing Countries , Female , Humans , Immunization Programs/economics , Immunization Programs/statistics & numerical data , Pandemics , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , SARS-CoV-2/physiology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination/methods
6.
Hum Vaccin Immunother ; 17(3): 836-837, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-786983

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has been growing, including in Japan where it has been estimated that as many as 3.1% of patients positive for new CoV strain SARS-CoV-2 might die of COVID-19-related respiratory failure. Meanwhile, human papillomavirus (HPV) is spreading in Japan. The fatality rate for HPV-associated cancers after infection with HPV is as much as that for COVID-19 in Japan, although the time to disease is much longer for HPV. Among advanced countries, the cervical cancer screening rate in Japanese females is very low. The Japanese Ministry of Health, Labor and Welfare (MHLW) suspended its official recommendation for HPV vaccination in June 2013 due to alleged adverse post-vaccination events in several young girls, such as chronic pain and motor impairment, which were repeatedly reported in the media. Subsequently, the rate for vaccinating girls plummeted from approximately 70% to the current rate of 1% or less. Women should accept HPV vaccination for the eventual prevention of cervical cancer with the same passion they are for COVID-19 testing.


Subject(s)
Alphapapillomavirus/immunology , COVID-19/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , COVID-19/virology , Early Detection of Cancer/methods , Female , Humans , Japan , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination/methods
7.
Int J Cancer ; 148(2): 277-284, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-635339

ABSTRACT

The age-standardised incidence of cervical cancer in Europe varies widely by country (between 3 and 25/100000 women-years) in 2018. Human papillomavirus (HPV) vaccine coverage is low in countries with the highest incidence and screening performance is heterogeneous among European countries. A broad group of delegates of scientific professional societies and cancer organisations endorse the principles of the WHO call to eliminate cervical cancer as a public health problem, also in Europe. All European nations should, by 2030, reach at least 90% HPV vaccine coverage among girls by the age of 15 years and also boys, if cost-effective; they should introduce organised population-based HPV-based screening and achieve 70% of screening coverage in the target age group, providing also HPV testing on self-samples for nonscreened or underscreened women; and to manage 90% of screen-positive women. To guide member states, a group of scientific professional societies and cancer organisations engage to assist in the rollout of a series of concerted evidence-based actions. European health authorities are requested to mandate a group of experts to develop the third edition of European Guidelines for Quality Assurance of Cervical Cancer prevention based on integrated HPV vaccination and screening and to monitor the progress towards the elimination goal. The occurrence of the COVID-19 pandemic, having interrupted prevention activities temporarily, should not deviate stakeholders from this ambition. In the immediate postepidemic phase, health professionals should focus on high-risk women and adhere to cost-effective policies including self-sampling.


Subject(s)
Alphapapillomavirus/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Public Health/methods , Uterine Cervical Neoplasms/prevention & control , Adolescent , Adult , Alphapapillomavirus/physiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Early Detection of Cancer , Europe , Female , Humans , Male , Middle Aged , Pandemics , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Public Health/standards , Public Health/statistics & numerical data , SARS-CoV-2/physiology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/immunology , Vaccination/methods , World Health Organization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL